Improved Face Detection and Alignment using Cascade Deep Convolutional Network
نویسندگان
چکیده
Real-world face detection and alignment demand an advanced discriminative model to address challenges by pose, lighting and expression. Recent studies have utilized the relation between face detection and alignment to make models computationally efficiency, but they ignore the connection between each cascade CNNs. In this paper, we combine detection, calibration and alignment in each Cascade CNN and propose an HEM method for End-to-End cascade network training, which give computers more space to automatic adjust weight parameter and accelerate convergence. Experiments on FDDB and AFLW demonstrate considerable improvement on accuracy and speed.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملAdaptive Cascade Deep Convolutional Neural Networks for face alignment
Article history: Received 27 April 2015 Received in revised form 8 June 2015 Accepted 8 June 2015 Available online 16 June 2015
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملEffective face landmark localization via single deep network
In this paper, we propose a novel face alignment method using single deep network (SDN) on existing limited training data. Rather than using a max-pooling layer followed one convolutional layer in typical convolutional neural networks (CNN), SDN adopts a stack of 3 layer groups instead. Each group layer contains two convolutional layers and a maxpooling layer, which can extract the features hie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.09364 شماره
صفحات -
تاریخ انتشار 2017